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The response of a quantum field to classical chaos 
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Abstract. The quantum theory of a massless scalar field in a box with one chaotically 
moving wall is presented. The time dependence of normally ordered coherence functions 
is found to be chaotic, whereas the number of quanta present is insensitive to the details 
of the chaotic motion. 

1. Introduction 

The study of quantum chaos [ 11 is attracting attention although there is no definition 
of it which is accepted universally. The studies to date have been concerned with 
systems with effectively a small number of degrees of freedom. Chaos in quantum 
field theory has not been discussed. Such a discussion is clearly going to be a difficult 
one. Classical chaos in the early days was analysed for idealised models. One such 
system [2] involves a massive Newtonian particle bouncing in a container with a 
moving wall, The particle motion showed stochasticity. A natural generalisation of 
this to an infinite number of degrees of freedom is the dynamics of a massless scalar 
quantum field which vanishes outside a box with one chaotically oscillating wall. The 
study of such a model system, we hope, will be a useful preliminary step in the 
understanding of the interplay of chaos and quantum fields. The specialisation to a 
scalar field is not unnecessarily restrictive, since, if we were to consider a polarised 
electromagnetic field in the box, the polarisation of the field would be unaffected by 
the type of motions of interest to us. The magnitude of effects in the electromagnetic 
case will be small unless the motion of the wall is relativistic which is difficult to 
achieve. However, the same model could in principle apply to an elastic medium 
(where instead of photons we deal with phonons) and this objection is less important. 
At this stage the model should be regarded purely as a theoretical laboratory. 

The method of quantisation that we will adopt is already known [3,4]. It is 
essentially canonical quantisation which is adapted to quantum field theories with 
moving boundaries. Within the subject of chaology it seems to be little known. Since 
it is within the context of chaos that we wish to present our considerations we will 
outline the method. The accelerating wall excites the zero-point energy in the box. In 
our case the wall motion is chaotic and the accelerations result from this motion. Can 
we distinguish in the quantum field theory the chaotic nature of the motion from other 
simpler motion? The answer is that the correlation (or coherence) functions for the 
field operators can distinguish between chaos and non-chaos. In contrast the spectrum 
of excitations for the motion cannot. For clarity we will initially restrict our calculations 
to slow wall motions and also for simplicity to a one-space and one-time field theory. 

0305-4470/88/040971+ 10$02.50 @ 1988 IOP Publishing Ltd 97 1 



972 S Sarkar 

The qualitative features of our results are unchanged if restriction to slow wall motions 
is relaxed, and we discuss the reasons for this at the end of the next section. 

2. Quantisation in the presence of moving boundaries 

We will consider the method of canonical quantisation. For a finite-dimensional theory 
with a 2N-dimensional phase space it is necessary to choose coordinates {q'}ls,c 
and conjugate momenta {p,}II,sN. These operators are then required to satisfy the 
commutation 

It is helpful to consider this very familiar procedure from a more abstract viewpoint. 
I f  Q is the classical space of the coordinate q, then the classical phase space ( q , p )  
forms a cotangent bundle [ 5 ]  T*Q. This bundle is a finite-dimensional symplectic 
manifold [5] since it has a natural non-degenerate 2-form U 

N 

u =  dq 'hdp ,  
, = I  

whose exterior derivative is zero. The Poisson bracket {f; g} of two smooth functions 
f and g ,  from T*Q to the reals, can be defined in terms of U :  

where 

(4) 
af a af a 5 -- 7-7 -. 
api aq dpi .f- 

Although there are many subtleties in the general quantisation programme, a standard 
approach is to obtain the canonical commutation relations by replacing the Poisson 
brackets for a special set of classical observables by commutators. We are interested 
in the field theory of a massless scalar field and, akin to all field theories, it is infinite 
dimensional. A symplectic form analogous to U needs to be found. The classical field 
equation is, of course, 

and q( t ,  x) E H'(IW), a q ( t ,  x)/atE L*(IW). The wavevelocity has been taken to be one. 
Moreover, L2(Iw) is the space of measurable functions defined almost everywhere on 
R such that I fl' is integrable, and H1(R) is the space of functions with first derivatives 
in L2(R). For T*Q we will take H I @ )  x L 2 ( R )  and the corresponding U 

where ( h o ,  lo) and ( h , ,  ZI) E H ' ( R )  x L*(R) .  This symplectic structure of the space of 
classical solutions [ 51 can be quantised as in the finite-dimensional case by associating 
operators with a 'canonical' basis of T*Q such that the commutators are given by the 
2-form U on the corresponding canonical classical solutions. We will give the detailed 
correspondence after having introduced the modification for moving boundaries. If 
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x = b,( t )  is the left-most boundary and x = b2( t )  is the other boundary, then equation 
(3)isforfieldscp(x, t )EH’(Z)andacp( t ,x ) /d t~  L2(Z)  wherezistheinterval b , ( t ) s x s  
b2( t ) .  Hence for two solutions cpl(x, t )  and cp2(x, t )  the action of U gives 

which we will simply denote by ( c p l l c p 2 ) .  From the field equations and the boundary 
conditions (equivalent to a tangential component of the electric field vanishing at the 
wall or mirror) 

cp(b , ( t ) ,  t )  = cp(b2(f ) ,  0 = o  ( 7 )  

it is easy to see that ( c p 2 / 4 0 , )  is independent of time. It is possible to choose two sets 
of classical solutions {u,(x, t ) l m  = 1, .  . . ,a} and {u,(x, t)lm = 1 , .  . . ,a} such that [5] 

( u m  j = 0 ( o m  1 U, ) = 0 ( u m l c r , )  = am,. (8) 

In the appendix an explicit construction for such sets is given in terms of a complete 
set of real orthonormal functions on the interval b , ( O ) s x ~  b2(0 ) .  The theory is 
quantised by associating operators p ,  with U, and q, with U,, and the commutator 
[ p , ,  qm]  is defined to be 

[P,, qmI=-i(unlum)=-i6nm (9) 

(units have been chosen so that h = 1). 
The other commutators are defined similarly. We will restrict ourselves to b , ( t )  = 

b,(O) = 0 for all t ,  i.e. the left-most mirror is stationary. It is possible to show [4] that 

u,(x, t )  = ( 2 n ~ ) - ” ~ [ c o s (  ~ T R (  t - x) )  - cos( n r R (  t + x))]  

v,(x, t )  = ( 2 n ~ ) - ” ~ [ s i n ( n ~ R ( t + x ) )  - s i n ( n ~ ~ ( t - x ) ) ]  
(10) 

where R is twice differentiable, invertible and satisfies 

R (  t - b 2 ( f ) )  = R ( t  + b,( t ) )  -2  

(we will, for convenience, describe this in the appendix). 
So far we have been rather general. It is necessary now to have some idea of the 

solution of (11) at the analytic level and find what properties of the chaotic motion 
are reflected in R ( t ) .  This is helped by noticing that for a mirror moving with velocity 
U (i.e. b 2 ( t )  = u t )  

(11) 

R ( t )  = (tanh-’ U)-’ log t 

which for small U reduces to 

(the last integral relation for R ( t )  is valid also for a stationary wall). 
If we are to obtain R ( t )  in the general case it seems difficult to make progress 

without restricting attention to I&(t ) l<< 1. In common with studies in chaos we will 
be interested in the behaviour of the quantum field at large times, i.e. for times such 
that the ratio of b 2 ( t )  to the unperturbed length of the cavity is much larger than 
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1 + b,( t ) .  This allows a systematic solution of (1 1) and it is possible to write (motivated 
by (12)) 

R(t*:x)= -+g'*' - I ' b:(y ) ( b i t ) '  ")' 
g'* )  is a function that needs to be determined and E is the order of Id,(t)l. The 
indefiniteness of the integrals is not of concern since R is indeterminate up to a 
constant. In fact if R + R + CY then 

U, + U: = cos( n m  ) U, + sin( nra ) U, 

U,+ ~~=co~(n . r rcu )v , - s in (nra )u ,  
which is just an orthogonal transformation and the commutation relations are 
unaffected: Since E is small it is possible to write [4] 

cc 

g'"(&, E S )  = gF)(t, S)&,. 
n = O  

We can show that 

+ i E 2 ( 6 -  53)[-2(6;(t))2+ b ; ( t ) b ; " ( t ) l + o ( ~ ~ )  

where K 2 ( & t ) =  b , ( t ) ,  i.e. d /ds  b; ( s )  (=6;(s)) is of order 1. 
A similar expression holds for g ' - ) ( t ,  e t ) .  (The details of th  equation satisfied by 

g"'(& ~ t )  will be given in the appendix.) We will now utilise these results to discuss 
what signatures a chaotic wall motion will leave on the quantum field theory. The 
type of motion that we will consider has the prescribed form 

L for t<O 

b( to)  for t 5 to 
b2( t )  = b( t )  for t ,  > t 5 0 (17) 

b(0 )  = 0 b( t o )  = 0. 

{ 
where 

b(0)  = L 

We will take advantage of the freedom given in (14) by choosing the lower limit of 
the integrals in (16) to be to. In our case b ( t )  will be taken to be chaotic. Generally 
we can write 

cs 

b ( t )  = f ( w )  exp(iwt) dw (18) I_, 
with 

f ( - w )  = f * ( w ) .  

By chaotic motion of the wall we will mean that f ( w )  is broadband. When the mirror 
is stationary for t < 0 it is easy to describe the state of the field in terms of harmonic 
oscillator Fock states. Given an operator set {pm, qmlm = 1, . . . ,a} and a vacuum state 
10) such that 
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the general states are spanned by a basis In) defined as 

and n = (n,, . . , , n,, . . .). An essential type of quantity that we need to calculate is 
the expectation value of the field operator at time O <  t < to in the states In). We can 
say that we have the join of a stationary 'motion' with the chaotic motion at t = 0, and 
we need to find the relationship of the field for t > 0 to that for t < 0. In general if 
there is join of two motions of the wall b ' l)(r)  and b i 2 ' ( t )  at t = t' then the quantum 
field can be written as 

V(X, t)=C(v' , ' )(x,  r)p!,'I-uy'(x, t ) q y ) )  for t < t '  
n 

On referring to the appendix it will be clear that for i = 1 , 2  

u!,"(x, t )  = (2n.rr)- '"{cos[n.rr~"~(t  -x) ]  - c o s [ n . r r ~ ( " ( t i x ) ] }  

u:)(x, t )  = (2n.rr)-"2{sin[n.rr~'"(t +x)]-sin[n.rr~"'( t-x)]} 
(22) 

and 

R"'( t - b'"( t ) )  - R"'( t + b"'( t ) )  + 2 = 0. 

It is necessary to obtain the relation between the operators p! , ' ) ,  4:' and pi;", q(n*'. 
With the help of such a relation it is possible to calculate the expectation value of the 
field operators for t > t' in the Fock space defined by p y ) ,  q','). In  a similar way it is 
possible to calculate the expectation value of field operators for t < t ' in the Fock space 
defined by pi*' ,  qy ' .  An example of such a relation is 

p i ' =  (Cplu2') =c [(ui,"luX')pz,-(u:'lu!,!, ')q' ,z'] .  ( 2 3 )  
n 

We must note a somewhat technical point here. In the definition of ( a l b )  it is necessary 
that a and b are defined over the same interval. For a = U!,!,) and b = U'," the intervals 
0 s  x S b"'( t )  and O S  x s b"'( t )  do not coincide. In order to have a consistent 
definition away from t = t '  we need to define the propagation function D(x, t ;  x', r ' ) .  
It solves the problem of the evolution of a classical configuration space function f(x, t ' )  
for t > t' since - 

a 
b,t I )  a t  

hZl  1 ' '  

D(x, t ;  x't ') , f ( x ' ,  t ' )  dx'  f ( x ,  t )  = 

where b,  and h2 are as in ( 7 ) .  (We hope that there is no confusion with b"' and b"' 
introduced before (21).) Further details of D are given in the appendix. With the 
help of D we can write 

Vi"(X, f ) =  - ( D ( x ,  t ;  ., t ' ) l U i " ( . ,  1 ' ) )  for t > t'. 
Continuing now with the relations of the form given in (23) it is easy to show that 

p'," =c [ ( u ~ ' i u ( , 2 ' ) p ( , f i - ( u ~ J J u i ) ) 4 ' n 1 i ]  (25) 
m 

and 
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The conclusions summarised in (19)-(26) are quite general. We will evaluate the 
consequences for the motion of (17).  For non-trivial features it is necessary to work 
to O(E' ) .  Later we will argue quite generally that our conclusions are unaffected by 
higher-order terms in E. In this case 

b("( t )  = L 

and so 

R ( ' ) + ( x ,  t )  = ( x +  t ) / L .  

Hence 

Similarly 

It is straightforward to show that 

(u:i)lU:)) = 0 + 0 ( & ~ )  

(uplu:)) = 0 + 0 ( & ~ )  

and 

(32) 

Hence from (25) and ( 2 6 )  we can deduce that 

- c ( - l ) k + n  (kn) ' /2L6(0)  ( 1 +--) 1 
( 1 ) + 0 ( ~ 3 )  

k ( # n )  IT' ( k + r ~ ) ~  ( k - n ) 3  q k  

and 

(33) 
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Clearly q'," and p',z' do not depend on the detailed nature of the chaotic motion of 
the wall. As a result, given an initial stage In")) (similar to In) of (20) except that 
(q:', p;)) replaces ( q m r  pm)  for all m )  expectation values of powers of p'," and qL2) 
are of no avail in giving indicators about the chaotic motion. Equivalently the expecta- 
tions of the number of different excitations produced by the chaotically moving wall 
are quite insensitive to the details of the chaotic motion. 

The content of a field theory is best seen in the behaviour of normally ordered 
coherence functions. It is necessary to determine whether these functions are sensitive 
to the chaotic motion. This is easily done. The coherence functions are defined to be 

(lcp'-)(x,, t , )  . . . cp(-Yx,, fr)(P(+'(XI, t l )  . . . cp(+)(X,, 4) l )  

where 1 ) is an initial state of the form /n(')), 
Here 

and 

On substituting the expressions in ( 2 2 )  and (13) into (35) we see that the coherence 
function depends explicitly on b"'( t )  and not just on the time integral of b'"( t ) .  The 
exact form of the dependence requires us to specify the initial state I ). For a particularly 
simple initial state 1 ) with a single excitation in the mode no we have 

1 ) = a',','+lO) 

and the second-order coherence function (lcp(-'(x, t)cp'+'(x, t ) l )  is 

[exp(-in,rR'"-(x, t)) -exp(-in,rR'"+(x, t ) ) ]  

x [exp(-inrR'"-(x, t ) )  - exp(-inrR'2'+(x, t ) ) ]  . l 2  
It is now necessary to extract the time dependence of this coherence function. We can 
write (cf (13) and (16)) 

~ ' " ( x ,  t )  = a(x,  t ) + c ' " ( x ,  c ) + o ( & ~ )  
where 
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Moreover, both a and  C* are real. It is then easy to show that 

(Jcp‘-’(x, t)cp‘+’(x, t ) l )  t ) )  exp(-ino7ra(x, t ) )  

x exp(- inm(x ,  t ) )  sin(nm-(x, t ) )  . l 2  
Since 

and  the series 

c- 3 
n # n ,  ( n o -  n )  

is absolutely convergent uniformly in x and  t, given a prescribed accuracy S there is 
a N6 such that 

approximates the infinite series to within S for all x and  t. With further analysis we 
can show that the condition 

is sufficient to guarantee that the truncated series is accurate to within S. It is clear 
that a (x ,  t )  and c‘”(x, t )  are chaotic since they are expressed directly in terms of b ( t ) .  
The expression 

i n # no1 

is chaotic, as it is a finite sum where all the individual terms are chaotic. As a result 
(lcp(-’(x, t)qi’!(x, t ) l )  is to any arbitrary accuracy well represented by a chaotic time 
dependence for all time. 

This low-order calculation is illustrative of the situation in general. In fact the 
quantities 

( 2 )  ( 1 1  
(U; ’ 1  U:’) (u‘,“iu:’) ( U y ’ l v : ) )  ( u n  / u r n )  

are insensitive to the details of chaotic motion. Indeed we have relations such as 
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a 
- D ( x ,  t ;  x ’ ,  t ‘ )  
a t  

and the integration smears out any dependence on the form of chaotic motion of the 
wall. Hence the p‘,” and q!,“ which are determined by these entities will not be sensitive 
to the chaos. However, from (16) we see that the functions R‘” are sensitive. Conse- 
quently, the field q ( x ,  t )  will reflect the chaotic motion during the time the mirror is 
moving chaotically. The resulting coherence functions will thus have a chaotic time 
dependence. 

We have shown the interplay between chaos and a quantum field for a simple 
model. An interesting next step would be to introduce intrinsic non-linearity of the 
dynamics of the quantum field. From our analysis we could speculate that a more 
complicated model with self-generated chaotic structure in the cavity modes would 
have coherence functions which show chaos. 

a 
1 = 1 1  a t ’  

(A41 = -- D ( x ,  I ;  x ’ t ‘ )  = 6 ( x  - x ’ ) .  
1 = 1 ’  

Appendix 

We will prove some of the results referred to in the text. First we will give arguments 
to support the existence of functions satisfying (8). For the interval b,(O) s x s b,(O) 
it is possible to construct a complete set of orthonormal functions which vanish at the 
endpoints. Such a set is 

The quantities U, and U ,  are constructed as 

bJO) 

b, (O)  

D ( x ,  t ;  x ’ ,  O)f , (x’ )  dx’ url(x, f )  = 

For this to be a correct solution it is necessary that D ( x ,  t ;  x ’ ,  t ‘ )  satisfies the wave 
equation in both ( x ,  t )  and ( x ’ ,  t ’ ) ,  together with the boundary conditions of ( 7 ) .  
Without this U,, and U, would not be solutions of the wave equation with correct 
boundary condition. In order to have 

(un lum)  = Snm 

we find it necessary to require that 

Other conditions on D can be found in a similar way. We have converted the problem 
of finding u, (x ,  t )  and u,(x,  t )  into the one of constructing D ( x ,  t ;  x’, t ‘ ) .  Such a D 
can be constructed but we will not give it here. 

There is another more direct way of obtaining a set of classical solutions vanishing 
at the boundaries. For simplicity we will consider b , ( t ) = O .  Instead of ( t ,  x )  we 
transform to the pair of variables (U, s) 

R (  t - x )  = U - s R (  t + x )  = U + s (A5) 
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where R is an invertible function and twice differentiable. We also require that s = 0 
and s = 1 correspond to the boundaries x = 0 and x = 62( t ) .  It is easy to deduce that 

R ( t +  b,( t ) )  = U + 1 R ( t  - b , ( t ) )  = U - 1 

and so [4] 

R (  t + 6,( t ) )  - R (  t - b2( t ) )  = 2. (A61 
Moreover, the equation for cp in terms of U and s is again a wave equation. The 
problem is reduced to finding the modes of the classical wave equation with fixed 
boundaries. A complete set of solutions is given by 

U, = (21 nw)“2 sin m u  sin m s  
U, = (21 rrn cos m u  sin m s  

U, = ( I / ~ ~ ) ” ~ [ C O S  m ( u  - s) - cos 7rn( U + s)] 
v, = ( 1 / 2 ~ n ) ” ~ [ s i n  m ( u  + s) -sin m ( u  - s)]. 

which can be rewritten 

(A71 

These are equivalent to (10). 

of multi-time scale analysis in hydrodynamics is possible. If we write 
The solution of (A6) is in general not known. However, an analysis reminiscent 

R * ( x ,  t )  = R (  t * x )  (A8) 
then 

a aR 
a t  ax 
- R * ( x ,  t )  = *- 

and, corresponding to (A6), 
R * ( T b 2 ( t ) ,  t ) = R ’ ( i b , ( t ) ,  t ) - 2 .  

We introduce functions 

From (A8) we deduce that 

On assuming that I&( t ) ( < <  1 and g is slowly varying with time we can write the expansion 
of (15). The equations for g ( * )  obtained by equating powers of E in ( A l l )  can then 
be solved recursively in a straightforward manner. 
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